
Introduction to the Use of Dimemas

Tutorial material
This tutorial contains an example and guidelines to get started on the use of
Dimemas. In the directory where it is located you can find:

• A Paraver trace Iberia-128-CA.chop1.1it.shifted.prv for a 128 processor
run of the WRF application. The traces was obtained on MareNostrum with
Extrae, using the LD_PRELOAD mechanism to intercept entries and exits to
MPI. The trace contains events on entry and exit to the MPI calls and
hardware counter (cache misses, instructions and cycles) events at these
points.

• Its corresponding .pcf file with the symbolic information for the numerically
encoded records in the trace.

• A directory ./cfgs with some paraver configuration files that will be used
during the analysis of the traces obtained in this session.

• Four initial Dimemas configuration files named MN.128.{1,2,4,8}ppn.cfg

• A directory ./full_session.1ppn with all the derived Dimemas
configuration files and its simulation outputs for the 1-processor-per-node
configuration. We recommended to initially ignore its content and follow the
tutorial to get acquainted with Dimemas and DimemasGUI.

Objective
We provide a Paraver trace file describing an actual run (one iteration) of the WRF
code in MareNostrum2 supercomputer. Our objective is to perform several Dimemas
simulations to identify the sensitivity of the application performance to interconnect
parameters.

A first step would be to model with Dimemas the actual MareNostrum2
configuration and check whether the prediction matches the actual behavior. Then
we can proceed to study the potential benefit of hypothetical changes in the
architecture.

Generating a Dimemas trace and performing a
simulation
The first step is to convert the Paraver trace into a Dimemas file using prv2dim. To
do so, execute the following command in a terminal window:

> $(DIMEMAS_HOME)/bin/prv2dim
Iberia-128-CA.chop1.1it.shifted.prv
Iberia-128-CA.chop1.1it.shifted.dim

The Dimemas configuration file MN.128.1ppn.cfg included in the tutorial directory
describes an architecture model idealized from MareNostrum2 interconnection
network (8 us latency, 250 MB/s but no contention in the network) with only one
process per node. Run the following the command in a terminal window:

> $(DIMEMAS_HOME)/bin/Dimemas -S 32K -p

prediction.1ppn.prv MN.128.1ppn.cfg

In a few seconds you should get the prediction.1ppn.prv Paraver trace trace
which is a reconstruction of what would have been the behavior on the machine
modeled by the MN.128.1ppn.cfg file.

We can now load the original trace (Iberia-128-CA.chop1.1it.shifted.prv) in
Paraver and the cfgs/mpi_call.cfg. We can do the same thing with the predicted
trace (prediction.1ppn.prv). Also load cfgs/mpi_call.cfg) with this second
trace. In order to ensure that both windows are at the same timescale, we should
copy it from the original to the synthetic trace (right click in the original trace
timeline window, select "Copy", and then move to the timeline of the synthetic trace
and do "Paste Size" and "Paste Time"). We can see that the prediction of Dimemas is
slightly optimistic, but quite close to the reality.

Changing the machine model
Let us assume that we are interested in finding out what would be the impact of a
slower network (i.e. only 10 MB/s). We should use the Dimemas GUI to tune the cfg
file. First load the GUI executing following command in your terminal:

> $(DIMEMAS_HOME)/bin/DimemasGUI

Once the it has load, follow the next sequence of action:

1. "Configuration" → "Load configuration" and select the file MN.128.1ppn.cfg

2. "Configuration" → "Target configuration". Click on the "Config" button by the
"Environment information" to change the "Network Bandwidth" to 10.0 MB/s
(please introduce the trailing dot and zero characters). Then click "Save".

3. "Configuration" → "Save configuration" to a file (e.g.
MN.128.1ppn.10MBps.cfg)

Perform the Dimemas simulation specifying a name for the output Paraver file and
the just saved Dimemas configuration file:

> $(DIMEMAS_HOME)/bin/Dimemas -S 32K -p
prediction.1ppn.10MBs.prv MN.128.1ppn.10MBps.cfg

Now, load the new Paraver trace, load the cfg/mpi_call.cfg on it and copy its
timescale to the other two traces we had already loaded. We can see that although
the reduction in bandwidth was very significant (divided by 25), the actual impact
on performance was not huge (just 15%)

We may thus wonder what would be the impact of reducing bandwidth further. Let
us say to just 5 MB/s. You can repeat this process generating a new configuration
file with this modification in the interconnection network bandwidth. Now the
impact starts to be larger. It is also apparent that the impact is not the same in all
phases of the time-line. you can load the cfgs/p2p_size.cfg configuration and it
will be apparent that the communication phases that are more sensitive to the
bandwidth are those with larger messages as one would expect. In general, the
actual impact of a reduction in bandwidth will depend on the computational
granularity of the application, the message sizes, but also on the level of load
balance and the actual use of asynchronous communications within the application
or its tolerance to shifts in process pipelining.

file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/Iberia-128-CA.chop1.1it.shifted.prv
file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/cfgs/p2p_size.cfg
file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/cfg/mpi_call.cfg
file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/cfgs/mpi_call.cfg
file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/prediction.1ppn.prv
file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/prediction.1ppn.prv
file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/cfgs/mpi_call.cfg

- What is the impact of the latency?
You may start from the original MN.128.1ppn.cfg description. Come back to the
Dimemas GUI, load the configuration file asdo the following steps:

1. “Configuration" → "Target configuration”. Push the "Config" button by the
"Node information" label.

2. Change the "Startup" value under the "Inter-node communication
parameters" section and set it for example to 0.0001, to model a 100 us
latency.

3. After changing it click on the "Do all the same" button to apply the new
latency to all nodes (you could actually specify different latencies for
different nodes, the node number's showed up at the top of this window).

4. "Save" the specified latencies (startups). In Dimemas terms, latency is not
end to end but actually represents the local overhead an MPI implementation
has. It is assumed to use the CPU and after it, data transfer can start.

5. Create a new Dimemas configuration file (again "Configuration" → "Save
configuration") and perform the simulation (executing the simulator in the
terminal window).

If you load the resulting trace in Paraver, you can see that the performance impact
of such bad latency is negligible for this trace.

- Would I benefit from multi-rail adapters?
Start from the configuration of 5 MB/s. Go back to the Dimemas GUI. In the "Node
information" window change the "Input links" and "Output links" under the
"Inter-node communications parameters" section to 2. Save the configuration file
and simulate.

You can see a certain potential gain by this configuration. One might also study
increasing the input links but not the output links. Although not a foreseeable
feature of future architectures, this structure can give insight on the structure of
the application. For example if one region of an application shows an improvement
in this situation, it means that there is significant end point contention. One would
probably suggest to the application developer to restructure the schedule of
communications so that not all processes send to the same processes at the same
time, a frequently disregarded problem in many codes.

- What is the impact of contention?
Starting again from the original machine description you can wonder whether
contention caused by bad routing can hurt the performance. One way of modeling
this at a very abstract level is to change the "Number of buses" parameter in the
"Environment information" window. The number you put in this field is the
maximum number of possible concurrent transfers (except that a 0 means no limit
on the number of concurrent communications). A value of 1 would mean the
network topology would be a bus, with only one possible transfer at any time. You
can vary this parameter and see how sensitive is the application to contention. In
our case, the application still performs well with a very small number of concurrent
transfers (i.e. 2 is actually enough).

- What would be the impact of a faster processor?
For the previous machine description change the "Relative processor speed" of the
"Node information" window to 5.0. This will model a processor 5 times faster in the
execution of the sequential computation burst between MPI calls. You will observe
that now the application is more sensitive to contention. You will need to increase
the number of buses to achieve a good efficiency.

An interesting simulation is to assume infinite bandwidth (you have to put a 0 in the
"Network bandwidth" field on the "Environment information" window) and zero
latency ("Startup" value under the "Inter-node communication parameters" on the
"Node information" window). This will give a limit of the efficiency of the application
due to load imbalance and dependence chains.

- What happens if we simulate 2 processors per node? What
about 4 and 8?
At this point, try to repeat the whole analysis described in this section varying
"Number of processors" per node, and the processes (or "tasks") assigned to each
node. To do so, run the simulator using the Dimemas configuration files
MN.128.2ppn.cfg (2 processes per node), MN.128.4ppn.cfg (4 processes per node),
and MN.128.8ppn.cfg (8 processes per node). Compare the results with the
simulations with less processors.

Visualization of the internals of the communication
Given that Dimemas has knowledge of the actual point in time where a data transfer
takes place, it can emit such information to the generated Paraver file. The following
Paraver configuration files shows how this information can be visualized or which
measurements can be made. Let us assume we do a simulation with 10x processor
speed, only 20 concurrent communication.

• Configuration file /cfgs/used_network_bw.cfg >displays the aggregated
instantaneous bandwidth through the network.

file:///home/jgonzale/Workspace/PROJECTS_DIMEMAS/50_UPDATE_DIMEMAS_TUTORIAL_5.2.0/Introduction_to_Dimemas/cfgs/used_network_bw.cfg

	Tutorial material
	Objective
	Generating a Dimemas trace and performing a simulation
	Changing the machine model
	- What is the impact of the latency?
	- Would I benefit from multi-rail adapters?
	- What is the impact of contention?
	- What would be the impact of a faster processor?
	- What happens if we simulate 2 processors per node? What about 4 and 8?

	Visualization of the internals of the communication

