
Introduction to Paraver and Dimemas methodology (MPI
analysis)

This tutorial is structured as a bunch of rules that can be verified during the analysis
process. The results of looking at one rule diagnosis may open new rules to look at,
like in a search tree. The goal of this tutorial is not to describe the full search tree
but to focus on the first steps and show how to decide which branches are
interesting to explore. As a general characteristic of the analysis methodology with
Paraver and Dimemas, the approach is based on looking at the temporal and spacial
distribution of the performance data to understand the application behavior, detect
its different phases and identify the behavioral structure (that may be different from
the procedural structure). This detailed analysis allows to extract a lot of information
from the performance data collected during the run.

WARNING::: The first section is based on a tracefile without samples. If the tracefile
was obtained with samples the configuration files related to correlate hardware
counters with code regions have to be selected from cfgs/sampling.

The first question to answer when analyzing a parallel code is "how efficient does it
run?". The efficiency of a parallel program can be defined based on two aspects: the
parallelization efficiency and the efficiency obtained in the execution of the serial
regions. These two metrics would be the first checks on the proposed methodology.

• To measure the parallel efficiency load the configuration file
cfgs/mpi/mpi_stats.cfg This configuration pops up a table with %time that
every thread spends in every MPI call. Look at the global statistics at the
bottom of the outside mpi column. Entry Average represents the application
parallel efficiency, entry Avg/Max represents the global load balance and
entry Maximum represents the communication efficiency. If any of those
values are lower than 85% is recommended to look at the corresponding
metric in detail. Open the control window to identify the phases and iterations
of the code.

• To measure the computation time distribution load the configuration file
cfgs/general/2dh_usefulduration.cfg This configuration pops up a
histogram of the duration for the computation regions. The computation
regions are delimited by the exit from an MPI call and the entry to the next
call. If the histogram does not show vertical lines, it indicates the computation
time may be not balanced. Open the control window to look at the time
distribution and visually correlate both views.

• To measure the computational load (instructions) distribution load the
configuration file cfgs/papi/2dh_useful_instructions.cfg This
configuration pops up a histogram of the instructions for the computation
regions. The computation regions are delimited by the exit from an MPI call

file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/mpi/mpi_stats.cfg
file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/papi/2dh_useful_instructions.cfg
file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/general/2dh_usefulduration.cfg

and the entry to the next call. If the histogram doesn't show vertical lines, it
indicates the distribution of the instructions may be not balanced. Open the
control window to look at the time distribution and correlate both views.

• To measure the serial regions performance look at the IPC timeline
loaded with cfgs/general/2dh_usefulduration.cfg. What it's a reasonable
IPC would depend on the machine used to run the application, but typically
values lower than 1 identify poor performance sections. You can correlate the
IPC with the computation time modifying the Statistic of the useful duration
histogram to use correlate with metric and verify that the selected Metric
is Instructions per cycle. Now the cell color corresponds to the IPC
showing the correlation between duration (position) and IPC (color). Zooming
into an unbalanced region of the histogram would allow you to verify if the
unbalance is related to a different IPC. Change the Metric to Instructions to
correlate the duration with the instructions.

With these 4 views we've been able to get a first assessment of the parallel
efficiency of the code, to identify if either balance or communication are limiting the
performance, to analyze the structure and distribution of the computation with
respect to duration and instructions and to measure the performance of the
sequential regions (IPC) correlating its impact on the region duration. Before a
deeper analysis of the facts we detected as bad performing, it's a good idea to look
a bit more at the behavioral structure.

• To further identify the computational structure apply clustering to a
representative region of your code and load the configuration file
cfgs/clustering/cluster_id.cfg. This configuration pops up a timeline
that colors the different regions detected. Load the gnuplot generated by the
clustering module to correlate the regions with their distribution on the
scatter plot. Both comparison between clusters and within a cluster are
interesting. Use the Paraver timeline to check if more than one cluster are
executed at the same time by different processes. Correlate the potential
unbalance detected on the previous views (duration, instructions and IPC)
with the cluster(s) distribution. The metrics can also be correlated within the
Paraver 2d table using for instance the configuration file
cfgs/clustering/2d_usefulduration_vs_cluster.cfg.

Next steps would be driven by the results of the basic previous analysis. Select the
metrics you consider interesting to look at.

• If the global load balance is poor the previous views already give you
hints on the reason of the unbalance (instructions, IPC or a combination of
both). If the tracefile was obtained with callers, load the configuration file

file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/clustering/2d_usefulduration_vs_cluster.cfg
file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/clustering/cluster_id.cfg

cfgs/general/callers.cfg. This configuration pops up two timelines with
the caller function and the caller line of the MPI call previous to the region
start. If the values are showing as unknown, try a deeper level on the call
stack increasing in 1 the Caller Level tag of the window. If none of the
levels are available the tracefile may have not been properly merged or the
binary was not compiled with -g.

• If the performance of some of the main computing regions is low one
alternative is to look at the hardware counters available on the tracefile that
can be analyzed using the configuration files included on the Paraver
distribution ($PARAVER_HOME/cfgs/counters_PAPI). For a detailed analysis a
new tracefile can be generate with Extrae activating the sampling. In
combination with the clustering, the folding module would obtain very
detailed evolution of the performance hardware metrics. The folded data can
be loaded in Paraver or directly with gnuplot. This analysis would provide the
internal performance of the computing regions for the different hardware
counters available on the tracefile.

All the previous steps have been done using Paraver analyzer and the modules
implementing performance analytics (clustering, folding). The second part of this
introductory analysis methodology uses the Dimemas simulator to evaluate different
scenarios. The Dimemas predictions should have been taken as trends of the
application behavior under different conditions.

• To analyze the communication efficiency we can use Dimemas with the
configuration of an ideal network (no latency, infinite bandwidth). With this
simulation we can separate the communication time that was caused by the
data transfer from the communication time caused by the synchronization. To
do so, load the simulated trace and apply the mpi profile configuration file
(cfgs/mpi/mpi_stats.cfg). The Maximum global statistic at the bottom of
the table corresponds to the synchronization efficiency. The transfer efficiency
can be computed dividing the communication efficiency by the
synchronization efficiency. If the synchronization efficiency is close to the
communication efficiency the limitation is not on the application but on the
network capacity. Otherwise, the high time in MPI is not due to the need to
transfer data between processes but to the chain of dependencies and
serializations imposed by the code.

• To analyze the sensitivity to Latency and/or Bandwidth, if we have
found that transfer is limiting our performance, we can use Dimemas to check
if the code is sensible to bandwidth, latency or both. The first step would be to
check that the nominal simulation provide similar results than the
instrumented run. Small differences are acceptable and do not try to match
each MPI call separately but that the global communication time both in
collectives and point to point are similar enough. Then maintaining the

file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/mpi/mpi_stats.cfg
file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/general/callers.cfg

nominal configuration, modify only latency or bandwidth either with an
improvement or a deterioration. The extreme scenario of a nominal
configuration with unlimited bandwidth would tell us if the application is
limited by latency and we should consider grouping some communication or
reducing them. Load both simulations with Paraver and compare the time in
the different communication phases.

• Even if the transfer isn't a limiting factor may be interesting to look at the
nominal and ideal network simulations speeding up the processor. This
simulation would give some hints on the application scalability. Making 10
times faster the processor may be considered an optimistic prediction of
multiplying by 10 the number of tasks as we don't increase neither the
number nor the size of the communications. Load both traces with Paraver
and compare the time in the different communication phases.

• To evaluate the benefits of accelerating only some of the computing
regions that can be achieved with OpenMP or porting some kernels to
accelerators, we can use the clustered tracefile that allows to select which
regions are affected by the improvement. Try speeding up the main clusters
and not the small computations within the communication phases that
typically wouldn't be accelerated. This scenario allows you to measure the
Amdahl's Law effect on your code. Load both traces with Paraver and
compare the time distribution.

• To evaluate the benefits of balancing some of the computing regions
that you detected unbalanced during the analysis initial steps, we can use the
clustered tracefile to select the region and fix its duration to the average
burst time that can be computed with Paraver using the configuration file
cfgs/clustering/2dp_clusters.cfg and looking at the Average row in the
global statistics at the bottom of the table. Dimemas configuration requires to
express the time in seconds. Load both traces with Paraver and compare the
effect on the communication phase after the selected region.

Some of the analysis steps results may raise new questions. If balancing a region
doesn't have the desired impact on the communication phase after it, it may
indicate that the problem of the communication phase isn't the initial unbalance but
the serializations within the communication phase. The proposed methodology has
some fixed initial steps for the analysis covered in this tutorial. After these steps the
exploration would depend on the previous results and some examples have been
provided. Keep your investigator attitude and enjoy the analysis!

file:///home/pgonzalez/bsccns/codigo/tools/proyectos/wxparaver-tutorials/paraver-tutorials/trunk/Introduction_to_Paraver_and_Dimemas_methodology/cfgs/clustering/2dp_clusters.cfg

