
Guided demo MPI analysis:

• Load trace mpi/HydroC_mpi64.prv.gz 

• Load configuration file cfgs/mpi/mpi_stats.cfg

• This configuration pops up a table with %time of every thread spends in every 
MPI call.

• Look at the global statistics at the bottom of the outside mpi column. Entry 
Average represents the application parallel efficiency, entry Avg/Max represents 
the global load balance, entry Maximum represents the communication efficiency.

• Change in the main window the metric to nb of calls to look at the number of 
invocations and Average duration to look at the average duration of each MPI call

• Open the Control Window from the table (top left button). Use the zoom and 
contextual menu (right click) to navigate, view communications lines... 

• Load configuration file cfgs/mpi/user_functions.cfg.

• This configuration pops up a timeline where every color corresponds to one of the 
instrumented user functions,

• Zoom to identify one iteration and synchronize the interval with the MPI call 
timeline using the Copy and Paste commands.

• Double click on one color over the timeline to open the textual display of the 
actual function name and duration. Use the menu option Info Panel to hide it 
again.

• Create a table showing the default statistic (Time) accumulated per user function.

• Load configuration file cfgs/mpi/2dh_usefulduration.cfg

• This configuration shows a histogram of the duration for the computation regions. 
The computation regions are delimited by the exit from an MPI call and the entry 
to the next call.

• Using the Open Filtered Control Window button select one of the histogram 
modes, this will create a new timeline with the selected duration range. Use the 
Fit Semantic Scale →Fit Both option to set the gradient color such that it fits the 
actual range of durations in the new window.

• Modify the Statistics of the useful duration histogram to use the correlate with 
metric and verify that the metric wiindow is Instructions per cycle. Now the cell 

file:///home/judit/tutorial/wxparaver/mpi/HydroC_mpi64.prv.gz
file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dh_usefulduration.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/user_functions.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/mpi_stats.cfg


color will correspond to the IPC showing the correlation between duration 
(position) and IPC (color). Zoom into an unbalanced mode to verify if the 
unbalance is related to a different IPC.

• Load configuration file cfgs/mpi/2dh_useful_instructions.cfg

• This configuration pops up a histogram of the instructions on the computing 
regions (outside MPI).

• Copy the scale of one iteration from the useful duration timeline to this new 
histogram. Vertical lines identify well balanced regions with respect to the number 
of instructions.

Futher questions:

Paraver profile analyses

• Load configuration file cfgs/mpi/2dp_uf_several_stats_numbers.cfg Study the 

three different profiles. What do they compute (control window, statistic, data window)?

• Are all routines equally balanced in terms of time?

• Are all routines equally balanced in terms of instructions? Any of them is worse 
balanced?

• Do all routines achieve the same IPC. Which seem to have bad IPC?

• Check if L2 miss ratio is a possible cause of the observed poor IPCs 
(cfgs/mpi/L2D_miss_ratio.cfg displays the number of L2D misses per 1kinstr). 

Hint: clone the 2DP-uf-IPC profile and change data window.

• Routine equation of state:

• Average duration per call? Is the granularity enough to parallelize with OpenMP, 
GPU?

• How many invocations?

• Routine riemann:

• Average duration?

• Average IPC? 

• Which routines call MPI and which not? Use cfgs/mpi/2dp_uf_percentMPI.cfg. 

• Scaling: Load also trace of 128 processes (mpi/HydroC_mpi128.prv.gz) and cfgs/
mpi/2dp_uf_several_stats_numbers.cfg

file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dp_uf_several_stats_numbers.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dp_uf_several_stats_numbers.cfg
file:///home/judit/tutorial/wxparaver/mpi/HydroC_mpi128.prv.gz
file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dp_uf_percentMPI.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/L2D_miss_ratio.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dp_uf_several_stats_numbers.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dh_useful_instructions.cfg


• Pop up and synchronize the user functions views. Does it scale well?

• Which routines scale well or bad? (η=T64/2*T128)

• Do they scale well in terms of number of instructions?

Paraver histogram analyses

• Load cfgs/mpi/3dh_several_uf.cfg

• Routine UpdateConservativeVars

• Imbalanced? Multimodal distribution? 

• Which instances take more time and which less?

• Is it due to differences in the number of instructions? 

• Routine equation_of_state

• Are all the invocations of the same duration?

• Is there a pattern?

• Reason for difference between them?

• Routine riemann:

• All invocations of the same duration? Multimodal? Reason?

• Is the distribution similar at 64 and 128 processes?

• Routine make boundary

• What is its average IPC? What is the average IPC of the computation outside 
MPI? Why are they so different?

file:///home/judit/tutorial/wxparaver/cfgs/mpi/3dh_several_uf.cfg


Guided demo Dimemas analysis:

• In directory Dimemas we have prepared:

• The original HydroC_mpi64.prv.gz and its translation to the Dimemas format 
HydroC_mpi64.trf

• Dimemas configuration files and the corresponding traces generated by the 
Dimemas simulation for:

• dimemas_files/64.nominal.cfg: a “nominal” setup: 8 

processes per node, one adapter per node, 1GB/s, no network 
contention. D.64.nominal.prv.gz

• dimemas_files/64.10xCPUr.cfg: assuming 10x faster CPU 

for all computations. D.64.10xCPUr.prv.gz

• dimemas_files/64.10xCPUr.1xEOS.cfg: assuming 10x 

faster CPU except for routine equation_of_service that is assumed 
to stay equal. D.64.10xCPUr.1xEOS.prv.gz

• dimemas_files/64.10xCPUr.0.1xEOS.cfg: Assuming 10x 

faster CPU except for routine equation_of_service that is assumed 
to actually slow down by 10x due to parallelization overheads. 
D.64.10xCPUr.0.1xEOS.prv.gz

• Load the configuration file cfgs/mpi/user_functions.cfg on each of them. The 
loaded views will show the structure and relative impact of the different regions in the 
total time of each case. Copy the time scale from the original trace to each other trace to 
compare global scalability.

Further Dimemas analysis

• A similar process can be done using configuration files:

• dimemas_files/64.ideal.cfg: An “ideal” setup with instantaneous communication. 
D.64.ideal.prv.gz

• dimemas_files/64.NxCPUr.MBW.cfg: configuration of hypothetical target machine 
with N times faster CPUs and M (0.1 and 0.01) times the original bandwidth. 
D.64.100xCPUr.prv.gz, D.64.100xCPUr.0.1xBW.prv.gz, 
D.64.100xCPUr.0.01xBW.prv.gz

file:///home/judit/tutorial/wxparaver/Dimemas/D.64.100xCPUr.0.01xBW.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.100xCPUr.0.1xBW.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.100xCPUr.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.ideal.prv.gz
file:///home/judit/tutorial/wxparaver/cfgs/mpi/user_functions.cfg
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.10xCPUr.0.1xEOS.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.10xCPUr.1xEOS.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.10xCPUr.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/D.64.nominal.prv.gz
file:///home/judit/tutorial/wxparaver/Dimemas/HydroC_mpi64.prv.gz


Guided demo MPI+CUDA analysis:

• Load trace mpi+cuda/cuHydro_mpi32.filter1.prv.gz

• This tracefile contains only the MPI calls, user function and “large” computing 
burst from the MPI+CUDA execution. It has been obtained from the original trace 
with the filtering utilities in Paraver.

• Load configuration files mpi/mpi_stats.cfg and mpi/user_functions.cfg

• Use them to compare the execution of the MPI and the MPI+CUDA version. 
Compare the structure within one of the iterations on the two versions.

• Load trace mpi+cuda/cuHydro_mpi32.chop1.prv.gz

• This tracefile contains approximately a chop of one of the double iterations.. It has 
been obtained from the original trace with the cutting utilities in Paraver.

• Load configuration files cfgs/mpi+cuda/3dp_cudakernel_uf.cfg and 
cfgs/mpi+cuda/cuda_events.cfg

• The first configuration shows a profile of the number of cuda kernel invocations by 
each user function. Use the 3D – Plane chooser in the general Paraver window to 
select a different user function.

• The second configuration shows the CUDA runtime events instrumented.

• Use the zoom into a small area (control+select area) in one of them and 
synchronize all the timelines (Copy and Paste Default Special).

Further CUDA analysis

• Load the configurations cfgs/mpi+cuda/2dp_cudakernel.cfg and 
mpi/2dp_uf.cfg

• What is the average duration of the different kernels? And user functions?

• How many invocations of the different kernels appear? And user functions? 

• Pop up the view cuda events and zoom to show just the two lines corresponding to 
process 1. Use Paste Default Special to see the exact same region and objects in the 
cuda kernel view.

• Look for the cuRiemann function invocations.

file:///home/judit/tutorial/wxparaver/cfgs/mpi/2dp_uf.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi+cuda/2dp_cudakernel.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi+cuda/cuda_events.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi+cuda/3dp_cudakernel_uf.cfg
file:///home/judit/tutorial/wxparaver/mpi+cuda/cuHydro_mpi32.chop1.prv.gz
file:///home/judit/tutorial/wxparaver/cfgs/mpi/user_functions.cfg
file:///home/judit/tutorial/wxparaver/cfgs/mpi/mpi_stats.cfg
file:///home/judit/tutorial/wxparaver/mpi+cuda/cuHydro_mpi32.filter1.prv.gz


• How many Kernel invocations per cuRiemann function are done? How long do 
they take? Is the overhead relevant? Is the GPU speed-up versus the sequential 
code good for this routine?

• Look for the cuEquationOfState function

• How many Kernel invocations to the cuEquationOfState function are done? How 
long do they take? Is the same all over the trace? Is the overhead relevant?


	Paraver profile analyses
	Paraver histogram analyses
	Further Dimemas analysis
	Further CUDA analysis

