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Chapter 1

User guide

1.1 Quick start guide

The Foldingis a mechanism that provides instantaneous performance metrics, source code ref-
erences and memory references1. This mechanism receives a trace-file (currently generated by
Extrae- see further details on generating a trace-file for the Foldingin Appendix 2) and generates
plots and an additional trace-file depicting the fine evolution of the performance. The Fold-
inguses information captured through instrumentation and sampling mechanisms and smartly
combines them. In this context, the samples are gathered from scattered computing regions
into a synthetic region by preserving their relative time within their original region so that the
sampled information determines how the performance evolves within the region. Consequently,
the folded samples represent the progression in shorter periods of time no matter the monitoring
sampling frequency, and also, the longer the runs the more samples get mapped into the syn-
thetic instance. The framework has shown mean differences up to 5% when comparing results
obtained sampling frequencies that are two orders of magnitude more frequent.

1.1.1 Decompressing the package

The Foldingpackage is distributed in a .tar.bz2 file that can be uncompressed in the working
directory by executing the following command:

# tar xvz folding-1.0rc8-x86_64.tar.bz2

where folding-1.0rc8-x86 64.tar.bz2 refers to the Foldingpackage as distributed from
the BSC web page2.

1.1.2 Contents of the package

After decompressing the package, the working directory should be populated with the directories
(and corresponding descriptions) as listed in Table 1.1.

1.1.3 Quick run

This section provides examples of two types of execution of the Foldingtool. These examples
take benefit of the included sample trace-files from the package. For further information on how
to generate trace-files for the Foldingtool, check Appendix 2.

1This last option is experimental at the moment of writing this document
2http://www.bsc.es/computer-sciences/performance-tools/downloads
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Table 1.1: Contents of the folding package.
Directory Contents
bin/ Binary packages
etc/

extrae-configurations/ Minimal configuration files for Extrae
models/ Configuration files to calculate performance models

basic/
ibm-power5/
ibm-power7/
ibm-power8/
intel-haswell/
intel-nehalem/
intel-sandybridge/

include/ Header files for the development of 3rd party tools
lib/ Libraries for the folding
share/ Miscellaneous files

cfg/ Configuration files for Paraver
doc/ Documentation

html
examples/

folding-writer/ Example on how to generate data for the folding
user-functions/ Sample tracefile with manually instrumented regions
clusters/ Sample tracefile with automatically detected regions

Applied to manually instrumented regions

This first example uses a trace-file from the 444.namd SPEC benchmark that contains manually
instrumented information that is located in

${FOLDING_HOME}/etc/share/examples/user-functions

This trace-file was generated by Extraeand delimiting the main loop using the ExtraeAPI3,
more precisely the Extrae user function which emits events with label User function (or
event type 60000019). To apply the Foldingprocess to this trace-file, simply execute the following
commands:

# cd ${FOLDING_HOME}/etc/share/examples/user-functions

# ${FOLDING_HOME}/bin/folding 444.namd.prv "User function"

Applied to automatically characterized regions

This example consists of a trace-file for the Nemo application when executed in MareNostrum3.
This trace-file contains information regarding automatically characterized regions. This charac-
terization has been done using the Clustering tool4. This tool enriches the trace-file by adding
events labeled as Cluster ID (and event type 90000001) into the trace-file. In this context,
these events identify similar computation regions based on the event value. To apply the Fold-
ingprocess to this trace-file, simply execute the following commands:

3Please refer to http://www.bsc.es/computer-sciences/performance-tools/documentation for the latest
ExtraeUser’s Guide.

4Please refer to http://www.bsc.es/computer-sciences/performance-tools/documentation for the latest
documentation with respect to the Clustering tool.
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# cd ${FOLDING_HOME}/etc/share/examples/user-functions

# ${FOLDING_HOME}/bin/folding \

nemo.exe.128tasks.chop1.clustered.prv "Cluster ID"

This trace-file also contains all the necessary performance counters in order to take ben-
efit of several performance models based on performance counters. Simply add the -model

intel-sandybridge option to the Foldingscript to generate the plots with information of the
models instead of providing each performance counter individually. The commands to execute
should look like this:

# cd ${FOLDING_HOME}/etc/share/examples/user-functions

# ${FOLDING_HOME}/bin/folding -model intel-sandybridge \

nemo.exe.128tasks.chop1.clustered.prv "Cluster ID"

1.1.4 Exploring the results

The Foldingmechanism generates two types of output inside a directory named as the trace-file
given (without the .prv suffix). The first type of results include a set of gnuplot files where each
of these represents the evolution of the performance counters within the region. The tool also
generates a Paravertrace-file with synthetic information derived from the Foldingmechanism.

Using gnuplot

With respect to the gnuplot files, the Foldingmechanism generates as many files as the combi-
nation of analyzed regions (clusters, OpenMP outlined routines, taskified OmpSs routines, or
manually delimited regions) and the counters gathered during the application execution. The
user can easily list the generated gnuplot files calling ls *.gnuplot within the directory cre-
ated. The name of the gnuplot files contain the trace-file prefix, the identification of the region
folded, and the performance counter shown. For instance, the example described in Section 1.1.3
generates output files that can be explored by executing the command:

# gnuplot -persist \

444.namd.codeblocks.fused.any.any.any.main.Group_0.PAPI_TOT_INS.\

gnuplot

When executing the aforementioned command, the gnuplot command should open a window
that resembles that in Figure 1.15. The Figure shows that the application faces six phases that
execute at 4,500 MIPS approximately. Most of the code occurs in three code locations (being
line 76 the most observed line), and we also observe that phases related to high MIPS are related
with the activity in the middle of the code-line plot.

This file refers to the user routine main (which was manually instrumented) of the trace-
file 444.namd.prv and provides information of the total graduated instructions (PAPI TOT INS).
The user will notice that there are additional files for the different performance counters and
they can explore them individually. The Foldingalso generates an additional plot that combines
the metrics of all the counters into a single plot. This plot mainly provides information with
respect to the MIPS rate (referenced on the right Y-axis), and ratio of the remaining performance

5Warning! If the user has problems to open the gnuplot, they should check whether the gnuplot installation
is compatible and supports the default terminal. Otherwise, simply select the appropriate terminal (or leave it
blank) in the first four lines in the gnuplot script
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Figure 1.1: Evolution of graduated instructions for 444.namd.
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Figure 1.2: Evolution of multiple counters for 444.namd.

counters per instruction (referenced on the left Y-axis). For the particular case of the example
from Section 1.1.3, this plot can be explored calling:

# gnuplot -persist \

444.namd.codeblocks.fused.any.any.any.main.\

Group_0.ratio_per_instruction.gnuplot

This command should generate an output combining all the performance counter slopes as
shown in Figure 1.2.

The aforementioned instructions also apply to the automatically delimited example described
in Section 1.1.3. In this case, the region names are numbered as Cluster 1 to Cluster 11, but
they also contain the trace-file prefix and the performance counters to explore them individually.
If the user requested the performance models, then additional gnuplot files are created to provide
information regarding these models. For the particular case of the Intel SandyBridge model, it
generates three models that always generate the MIPS rate and add different metrics:

• instruction-mix
Gives insight of the type of instructions executed along the region.
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Evolution for Instruction mix model
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Figure 1.3: Instruction mix decomposition for Cluster 1 of Nemo.

• architecture-impact
Provides information regarding to the cache misses at different levels and the branch
mispredicts along the region.

• stall-distribution
This plot shows information regarding on which components of the processor are stalling
the processor pipeline.

For instance, to open the instruction mix for the region labeled as Cluster 1 of the Nemo
application executed in Section 1.1.3, the user needs to open the plot invoking the commands
below and should obtain a plot similar to Figure 1.3. The reader may see that the application
shows two distinctive phases (green and blue) and within each of them there are two repetitions
of the same performance.

# gnuplot -persist \

nemo.exe.128tasks.chop1.clustered.codeblocks.fused.any.any.any.\

Cluster_1.Group_0.instructionmix.gnuplot

The tool also provides a GUI-based tool to explore the plots. the user may invoke a visualizer
named wxfolding-viewer, by invoking it from the newly created directory such as:

# ${FOLDING_HOME}/bin/wxfolding-viewer *.wxfolding

Using Paraver

The Foldingprocess generates a trace-file with a suffix .folded.prv that lets Paraverto display
some parts of the folded results. The Foldingpackage includes several configuration files in
the ${FOLDING HOME}/share/cfg directory for Paraverto help analysing the results. From the
configuration files contained in that directory, we outline the following:

• views/

– win folded type.cfg

Generates a time-line that shows in which instances the Foldingresults have been
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Figure 1.4: Evolution of graduated instructions for 444.namd in Paraver.

Figure 1.5: Paraver time-line showing the callers for Cluster 1 of Nemo.

integrated. This helps correlating the original trace-file and its contents with the
folded trace-file. Notice that only one instance per type (where type refers to function,
cluster, etc...) is folded.

– win folded mips.cfg

Generates a time-line showing a signal of the MIPS rate within the folded instances.
See in Figure 1.4 a time-line depicting the MIPS rate achieved in the example trace-
file for 444.namd.

– win folded processed call-stack caller.cfg

Generates a time-line showing the most time-dominant routines as they have been
executed within the folded instances. Figure 1.5 shows a time-line depicting the
called routines for the Nemo example.

– win folded processed call-stack callerline.cfg

Generates a time-line showing the most time-dominant source code references (as
pair of line and file) as they have been executed within the folded instances.

• histograms/

– 3dh folded mips per caller.cfg

Generates a histogram that shows the achieved MIPS rate depending on the caller
(columns) for a particular region folded.

– 3dh folded mips per callerline.cfg

Generates a histogram that shows the achieved MIPS rate depending on the source
code references (pair of line and file in columns) for a particular region folded.

1.2 Configuration, build and installation

This section describes how to build and install the Foldingpackage. The Foldingpackage (and
its dependencies) requires the Boost library (only the headers suffice), a C compiler, a Fortran
compiler and a C++ compiler that supports the C++ 2011 specification (such as g++ version
4.8). This package optionally uses the strucchange package from the R statistical application
(and may execute in parallel if the doParallel is available) to use the piece-wise linear regression
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interpolation mechanism. Additionally, the Foldingpackage requires the libtools package to be
installed first. This package helps on the parsing of Paraver trace-files and can be downloaded
from the BSC download web page.

1.2.1 Libtools package

This package is included within the folding package and needs to be installed first. This
package reguires the boost header files6. If the boost header files are located in the system’s
default, simply run the following command:

# ./configure --prefix=/home/harald/aplic/libtools/1.0 \

&& make && make install

where --prefix indicates the destination folder for this package.
If the boost header files are located elsewhere in the system, run the following command:

# ./configure --prefix=/home/harald/aplic/libtools/1.0 \

--with-boost=/path/to/boost \

&& make && make install

1.2.2 Folding package

The most basic configuration for the Foldingpackage honors the following commands:

# ./configure --with-libtools=$HOME/aplic/libtools/1.0 \

--prefix=$HOME/aplic/folding/1.0rc8 && \

make && make install

where --with-libtools refers to the location of the libtools package installed in Sec-
tion 1.2.1 and --prefix indicates where to install the Foldingtool. If the compilation and
installation succeed, the contents of the target installation should look like as the contents
defined in Section 1.1.2.

The Foldingtool supports several compilation flags that modify the behavior or enable addi-
tional functionalities of the tool. The following list groups the flags according to the behavior
they enable.

• --with-clustering-suite=<DIR>

The Foldingtool relies on the similarity between the folded instances in order to generate
its results. By default, the Foldingtool includes two mechanisms to reduce the noise that
appear from using instances with significant different behavior. However, this flag allows
using the BSC Clustering suite as a third alternative in order to reduce the noise.

• --with-R=<DIR1>, --with-cube=<DIR2>, --with-clang=<DIR3>

Enables the usage of piece-wise linear regressions on top of the strucchange package7 from
the R statistical application8. This functionality requires the clang compiler9 and can
generate input files for the Cube3 performance analysis package10.

6The libtools package has been successfully tested against version from 1.48 to 1.54.
7http://cran.r-project.org/web/packages/strucchange/index.html
8http://www.r-project.org
9http://clang.llvm.org

10http://www.scalasca.org/software/cube-3.x/download.html
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• --with-boost=<DIR>

This flag lets the Foldingto use a given Boost installation package.

• --enable-gui

The results of the Foldingtool is a set of gnuplot files that have to explored manually. If
this flag is given at the configure step, the Foldingpackage would include a GUI written
in Python that helps exploring all the results from the tool.

• --enable-callstack-analysis

This flag enables the call-stack analysis of the segments captured during the measurement
step. Enabling this option results in gnuplot files that depict the performance progression
collocated with the source code progression.

• --enable-reference-analysis

This flag enables the memory references analysis of the references captured during the
measurement step (currently, through the perf system tool). Enabling this option re-
sults in gnuplot files that depict the performance progression collocated with the memory
address space and the sampled references.
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Chapter 2

Generate a trace-file for the Folding

This chapter covers the minimum and necessary steps so as to configure Extrae1 in order to use
its resulting trace-files for the Folding process. There are three requirements when monitoring
an application with Extraein order to take the most benefit from the Foldingtool. First, it is
necessary to enable the sampling mechanism in addition to the instrumentation mechanism
(see Section 2.1). Second, it is convenient to collect the appropriate performance counters
for the underlying processor (see Section 2.2). Finally, Extraeneeds to capture a segment of
the call-stack in order to allow the Foldingto provide information regarding the progression of
the executed routines. The forthcoming sections provide information on how to enable these
functionalities through the XML tags for the Extraeconfiguration file.

2.1 Enabling the sampling mechanism

Extraeis an instrumentation package that by default collects information from different parallel
runtimes, including but not limited to: MPI, OpenMP, pthreads, CUDA and OpenCL (and
even combinations of them). Extraecan be configured so that it also uses sampling mechanisms
to capture performance metrics on a periodic basis. There are currently two alternatives to
enable sampling in Extrae: using alarm signals and using performance counters. For the sake of
simplicity, this document only covers the alarm-based sampling. However, if the reader would
like to enable the sampling using the performance counters they must look at section 4.9 in the
ExtraeUser’s Manual for more details.

Listing 2.1: Enable default time-based sampling in Extrae.

1 <sampling enabled="yes" type="default" period="50m" variability="10m"/>

The XML statements in Listing 2.1 need to be included in the Extraeconfiguration file. These
statements indicate Extraethat sampling is enabled (enabled="yes"). They also tell Extraeto
capture samples every 50 milliseconds (ms) with a random variability of 10 ms, that means that
samples will be randomly collected with a periodicity of 50±10 ms. With respect to type, it
determines which timer domain is used (see man 2 setitimer or man 3p setitimer for further
information on time domains). Available options are: real (which is also the default value,
virtual and prof (which use the SIGALRM, SIGVTALRM and SIGPROF respectively). The
default timing accumulates real time, but only issues samples at master thread. To let all the
threads collect samples, the type must be set to either virtual or prof.

1Please refer to http://www.bsc.es/computer-sciences/performance-tools/documentation for the latest
ExtraeUser’s Guide.
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Additionally, the Foldingmechanism is able to combine several performance models and
generate summarized results that simplify understanding the behavior of the node-level per-
formance. Since these performance models are heavily-tighted with the performance counters
available on each processor architecture and family, the following sections provide ExtraeXML
configuration files ready to use on several architectures. Since each architecture has different
characteristics, the user may need to tune the XML presented there to make sure that all the
list performance counters are gathered appropriately.

2.2 Collecting the appropriate performance counters

The Foldingmechanism provides, among other type of information, the progression of perfor-
mance metrics along a delimited region through instrumentation points. These performance
metrics include the progression of performance counters of every performance counter by de-
fault. To generate these kind of reports, Extraemust collect the performance counters during the
application execution and this is achieved by defining counter sets into the <counters> section
of the Extraeconfiguration file (see Section 4.19 of the ExtraeUser’s guide for more information).

There has been research that has developed some performance models based on performance
counters ratios among performance counters in order to ease the analysis of the reports. Each
of these performance models aims at providing insight of different aspects of the application
and system during the execution. Since the availability of the performance counters changes
from processor to processor (even in the same processor family), the following sections describe
the performance counters that are meant to be collected in order to calculate these performance
models. These sections include the minimal <counters> sections to be added in a previously
existing Extraeconfiguration file, but the Foldingpackage also includes full Extraeconfiguration
files in ${FOLDING HOME}/etc/extrae-configurations.

2.2.1 Intel Haswell processors

Listing 2.2: Counter definition sets for the Extrae configuration file when used on Intel Haswell
procesors.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_L1_DCM ,PAPI_L2_DCM

4 </set>

5 <set enabled="yes" domain="all" changeat -time="500000 us">

6 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_L3_TCM ,RESOURCE_STALLS:SB ,RESOURCE_STALLS:ROB

7 </set>

8 <set enabled="yes" domain="all" changeat -time="500000 us">

9 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_SR_INS ,PAPI_BR_CN ,PAPI_BR_UCN

10 </set>

11 <set enabled="yes" domain="all" changeat -time="500000 us">

12 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_BR_MSP ,PAPI_LD_INS

13 </set>

14 <set enabled="yes" domain="all" changeat -time="500000 us">

15 PAPI_TOT_INS ,PAPI_TOT_CYC ,RESOURCE_STALLS ,RESOURCE_STALLS:RS

16 </set>

17 </cpu>

The listing 2.2 indicates Extraeto arrange five performance counter sets with performance
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counters that are available on Intel Haswell processors. The collection of these performance
counters allows the Foldingto apply the models contained in the ${FOLDING HOME}/etc/models/intel-sandybridge
that include: instruction mix, architecture impact and stall distribution. Unfortunately, the
PMU of the Intel Haswell processors do not count neither floating point nor vector instructions.

2.2.2 Intel SandyBridge processors

Listing 2.3: Counter definition sets for the Extrae configuration file when used on Intel Sandy-
Bridge procesors.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_L1_DCM ,PAPI_L2_DCM ,PAPI_L3_TCM

4 </set>

5 <set enabled="yes" domain="all" changeat -time="500000 us">

6 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_BR_MSP ,PAPI_BR_UCN ,PAPI_BR_CN ,RESOURCE_STALLS

7 </set>

8 <set enabled="yes" domain="all" changeat -time="500000 us">

9 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_VEC_DP ,PAPI_VEC_SP ,PAPI_FP_INS

10 </set>

11 <set enabled="yes" domain="all" changeat -time="500000 us">

12 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_LD_INS ,PAPI_SR_INS

13 </set>

14 <set enabled="yes" domain="all" changeat -time="500000 us">

15 PAPI_TOT_INS ,PAPI_TOT_CYC ,RESOURCE_STALLS:LOAD ,RESOURCE_STALLS:STORE ,

16 RESOURCE_STALLS:ROB_FULL ,RESOURCE_STALLS:RS_FULL

17 </set>

18 </cpu>

The listing 2.3 indicates Extraeto configure five performance counter sets with performance
counters that are available on Intel SandyBridge processors. The collection of these performance
counters allows the Foldingto apply the models contained in the ${FOLDING HOME}/etc/models/intel-sandybridge
that include: instruction mix, architecture impact and stall distribution.

2.2.3 Intel Nehalem processors

The listing 2.4 indicates Extraeto prepare three performance counter sets with performance coun-
ters that are available on Intel Nehalem processors. The collection of these performance counters
allows the Foldingto apply the models contained in the ${FOLDING HOME}/etc/models/intel-nehalem
that include: instruction mix, architecture impact and stall distribution.

2.2.4 IBM Power8 processors (experimental, under revision)

The listing 2.5 indicates Extraeto arrange six performance counter sets with performance coun-
ters that are available on IBM Power8 (and similar) processors. The collection of these perfor-
mance counters allows the Foldingto calculate the CPIStack model for the IBM Power8 processor
which is contained in ${FOLDING HOME}/etc/models/ibm-power8.

2.2.5 IBM Power7 processors

The listing 2.6 indicates Extraeto prepare six performance counter sets with performance coun-
ters that are available on IBM Power7 (and similar) processors. The collection of these perfor-
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Listing 2.4: Counter definition sets for the Extrae configuration file when used on Intel Nehalem
procesors.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_L1_DCM ,PAPI_L2_DCM ,PAPI_L3_TCM ,

4 RESOURCE_STALLS:SB ,RESOURCE_STALLS:ROB

5 </set>

6 <set enabled="yes" domain="all" changeat -time="500000 us">

7 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_SR_INS ,PAPI_BR_CN ,PAPI_BR_UCN ,PAPI_BR_MSP ,

8 PAPI_FP_INS ,RESOURCE_STALLS:LB

9 </set>

10 <set enabled="yes" domain="all" changeat -time="500000 us">

11 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_LD_INS ,PAPI_VEC_SP ,PAPI_VEC_DP ,

12 RESOURCE_STALLS ,RESOURCE_STALLS:RS

13 </set>

14 </cpu>

mance counters allows the Foldingto calculate the CPIStack model for the IBM Power7 processor
which is contained in ${FOLDING HOME}/etc/models/ibm-power7.

2.2.6 IBM Power5 processors

The listing 2.7 indicates Extraeto configure six performance counter sets with performance coun-
ters that are available on IBM Power5 (and similar) processors. The collection of these perfor-
mance counters allows the Foldingto calculate the CPIStack model for the IBM Power5 processor
which is contained in ${FOLDING HOME}/etc/models/ibm-power5.

2.2.7 Other architectures

The previous definitions of counter sets included performance counters that are available on
the specific stated machines. Since these performance counters may not be available on all
the systems, the package also provides a group of counter sets that may be available on a
variety of systems. Listing 2.8 defines three Extraecounter sets that may be available on many
systems (caveat here, not all systems may provide them). With the use of these counter sets,
the Foldingcan apply the models contained in the ${FOLDING HOME}/etc/models/basic that
include: instruction mix and architecture impact.

2.3 Capturing the call-stack at sample points

By default, the sampling mechanism captures the performance counters indicated in the counters
section and the Program Counter interrupted at the sample point. The Foldingprovides the in-
stantaneous progression of the routines that last at least a minimum given duration. To enable
this type of analysis, it is necessary to instruct Extraeto capture a portion of the call-stack dur-
ing its execution. Listing 2.9 shows how to enable the collection of the call-stack at the sample
points in the Extraeconfiguration file. The mandatory lines to capture the call-stack at sample
points are lines 1 and 4. Line 1 indicates that this section must be processed and Line 4 tells
Extraeto capture levels 1 to 5 from the call-stack (where 1 refers to the level below to the top
of the call-stack).
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Listing 2.5: Counter definition sets for the Extrae configuration file when used on IBM Power8
procesors.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL ,PM_CMPLU_STALL_DCACHE_MISS ,

4 PM_CMPLU_STALL_THRD ,PM_GRP_CMPL

5 </set>

6 <set enabled="yes" domain="all" changeat -time="500000 us">

7 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_BRU ,PM_GCT_NOSLOT_CYC ,

8 PM_CMPLU_STALL_FXU

9 </set>

10 <set enabled="yes" domain="all" changeat -time="500000 us">

11 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_SCALAR ,PM_CMPLU_STALL_LSU

12 </set>

13 <set enabled="yes" domain="all" changeat -time="500000 us">

14 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_STORE ,PM_CMPLU_STALL_DMISS_L3MISS

15 </set>

16 <set enabled="yes" domain="all" changeat -time="500000 us">

17 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_VECTOR ,PM_CMPLU_STALL_REJECT

18 </set>

19 <set enabled="yes" domain="all" changeat -time="500000 us">

20 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_DMISS_L2L3

21 </set>

22 </cpu>

Listing 2.6: Counter definition sets for the Extrae configuration file when used on IBM Power7
procesors.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL ,PM_CMPLU_STALL_DCACHE_MISS ,

4 PM_CMPLU_STALL_THRD ,PM_GRP_CMPL

5 </set>

6 <set enabled="yes" domain="all" changeat -time="500000 us">

7 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_DFU ,PM_CMPLU_STALL_IFU ,

8 PM_GCT_NOSLOT_CYC

9 </set>

10 <set enabled="yes" domain="all" changeat -time="500000 us">

11 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_FXU ,PM_CMPLU_STALL_SCALAR

12 </set>

13 <set enabled="yes" domain="all" changeat -time="500000 us">

14 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_LSU

15 </set>

16 <set enabled="yes" domain="all" changeat -time="500000 us">

17 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_STORE

18 </set>

19 <set enabled="yes" domain="all" changeat -time="500000 us">

20 PM_RUN_INST_CMPL ,PM_RUN_CYC ,PM_CMPLU_STALL_VECTOR

21 </set>

22 </cpu>
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Listing 2.7: Counter definition sets for the Extrae configuration file when used on IBM Power5
procesors.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PM_INST_CMPL ,PM_CYC ,PM_GCT_EMPTY_CYC ,PM_LSU_LMQ_SRQ_EMPTY_CYC ,

4 PM_HV_CYC ,PM_1PLUS_PPC_CMPL ,PM_GRP_CMPL ,PM_TB_BIT_TRANS

5 </set>

6 <set enabled="yes" domain="all" changeat -time="500000 us">

7 PM_INST_CMPL ,PM_CYC ,PM_FLUSH_BR_MPRED ,PM_BR_MPRED_TA ,

8 PM_GCT_EMPTY_IC_MISS ,PM_GCT_EMPTY_BR_MPRED ,PM_L1_WRITE_CYC

9 </set>

10 <set enabled="yes" domain="all" changeat -time="500000 us">

11 PM_INST_CMPL ,PM_CYC ,PM_LSU_FLUSH ,PM_FLUSH_LSU_BR_MPRED ,PM_CMPLU_STALL_LSU ,

12 PM_CMPLU_STALL_ERAT_MISS

13 </set>

14 <set enabled="yes" domain="all" changeat -time="500000 us">

15 PM_INST_CMPL ,PM_CYC ,PM_GCT_EMPTY_SRQ_FULL ,PM_FXU_FIN ,PM_FPU_FIN ,

16 PM_CMPLU_STALL_FXU ,PM_FXU_BUSY ,PM_CMPLU_STALL_DIV

17 </set>

18 <set enabled="yes" domain="all" changeat -time="500000 us">

19 PM_INST_CMPL ,PM_CYC ,PM_IOPS_CMPL ,PM_CMPLU_STALL_FDIV ,PM_FPU_FSQRT ,

20 PM_CMPLU_STALL_FPU ,PM_FPU_FDIV ,PM_FPU_FMA

21 </set>

22 <set enabled="yes" domain="all" changeat -time="500000 us">

23 PM_INST_CMPL ,PM_CYC ,PM_CMPLU_STALL_OTHER ,PM_CMPLU_STALL_DCACHE_MISS ,

24 PM_LSU_DERAT_MISS ,PM_CMPLU_STALL_REJECT ,PM_LD_MISS_L1 ,PM_LD_REF_L1

25 </set>

26 </cpu>

Listing 2.8: Basic counter definition sets for other processors not stated before.

1 <cpu enabled="yes" starting -set -distribution="cyclic">

2 <set enabled="yes" domain="all" changeat -time="500000 us">

3 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_L1_DCM ,PAPI_L2_DCM ,PAPI_L3_TCM

4 </set>

5 <set enabled="yes" domain="all" changeat -time="500000 us">

6 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_BR_CN ,PAPI_BR_UCN ,PAPI_LD_INS ,PAPI_SR_INS

7 </set>

8 <set enabled="yes" domain="all" changeat -time="500000 us">

9 PAPI_TOT_INS ,PAPI_TOT_CYC ,PAPI_VEC_SP ,PAPI_VEC_DP ,PAPI_FP_INS ,PAPI_BR_MSP

10 </set>

11 </cpu>

Listing 2.9: Collect call-stack information at sample points.

1 <callers enabled="yes">

2 <mpi enabled="yes">1-3</mpi>

3 <pacx enabled="no">1-3</pacx>

4 <sampling enabled="yes">1-5</sampling >

5 </callers >
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Chapter 3

Tool design

While the end user executes a single command to apply the Foldingtool, this command hides
two major components that are executed sequentially and all the outputs are generated into a
newly created directory with the name of the input trace-file. The first component processes a
user-given trace-file that contains instrumented and sampled data and generates a textual file
that contains sequences of instances and samples. The second component takes these sequences
of instances and samples, then applies the contouring algorithm, any performance model, and
the call-stack processing, and, finally, it generates the output results. Both components are
grouped together within the folding.sh appearing to the user that the Foldingsimply consists
of a single tool. The tool package contains additional components that may be capture the
interest of the user.

3.1 First component: trace-file processing

The first component is divided into three phases that are executed one after another with the
user-given trace-file and each of these parse the given trace-file and generates another trace-file
that will be used in the subsequent phase as depicted in Figure 3.1. Each of these phases are
built in a similar fashion. They parse the input trace-file and keep in memory information
regarding the thread state, and eventually, add information to the output. The phases are:

1. codeblocks (found in src/codeblocks)
This phase attributes to each sample information regarding to the loop / code region that
it belongs to according to the application source code.

2. fuse (found in src/fuse)
This phase compacts the trace-file and ensures that the resulting trace-file is well formed.

CodeBlocks

Fuse Extract

Source-code
(optionally)

Paraver
trace-file

.extract file

Figure 3.1: Data-flow for the first component of the folding.
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3. extract (found in src/extract)
This is the final phase and extracts information regarding the instances and samples within
the trace-file.

The output of this component is a set of files containing information relative to the appli-
cation. The most notable output is the .extract file, which contains the sequence of instances
and their samples. For instance, Listing 3.1 shows the contents of the .extract file generated
using the provided example to demonstrate the API facility. This listing contains information
regarding one instance of the FunctionA region. The instance starts at timestamp 1,000 ns
and lasts 4,500 ns, and it executes up to 2,500 instructions (PAPI TOT INS) and takes 5,000
cycles (PAPI TOT CYC) to complete. This instance has two samples associated that ocurred
at timestamps 2,000 and 4,000, and each of those provides information regarding the aforemen-
tioned performance counters.

Listing 3.1: Output example for the extract phase of the Foldingmechanism.

1 I 2 2 2 FunctionA 1000 4500 2 PAPI_TOT_CYC 5000 PAPI_TOT_INS 2500

2 S 2000 1000 2 PAPI_TOT_CYC 2000 PAPI_TOT_INS 1000 0 0

3 S 4000 3000 2 PAPI_TOT_CYC 4000 PAPI_TOT_INS 2000 2 0 1 2 3 1 3 4 5 0

3.2 Second component: applying the folding

The main objective of this component relies on processing the instances and samples extracted
and generate the output results. These results include the temporal evolution of the performance
counters, any models requested by the user, the source code references and memory references
progression, and the results are written in gnuplot and Paravertrace files. This section gives a
summarized view of the folding work-flow by depicting the most notable class diagrams found
in the application source code.

Figure 3.2 shows a portion of the classes that are most important within this tool. The classes
Instance and Sample refer to the instances and samples as-is, without any further processing
and as generated by the extract tool, in which each Instance contains a set of Sample, and
every Instance belongs to an InstanceContainer.

After reading every Instance, the folding may apply a clustering algorithm (see Figure 3.3)
according to the duration of each instance in order to reduce the difference between folded
Instance. Currently, there are three alternatives regarding the grouping.

• InstanceSeparatorNone groups all instances into a single group.

• InstanceSeparatorAuto automatically groups the instances according to their duration.
The grouping partitions the time-space interval defined by the shortest and longest in-
stances and looks for group of nearby instances.

• InstanceSeparatorDBSCAN groups the instances according to a DBSCAN algorithm ap-
plied to the duration of the instances. The DBSCAN algorithm groups together instances
that are closely packed together (instances with many nearby neighbors) in terms of time
and marks as outliers those instances that lie alone in low-density regions. This grouping
uses the ClusteringSuite implementation from the BSC performance tools1.

1See http://www.bsc.es/computer-sciences/performance-tools/downloads.
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InstanceContainer Instance
regionName : string

InstanceGroup Sample

Time : double
CounterValue : map <string, double>
crt : CodeRefTriplet

InterpolationResults

*

*

used, unused

*

instances, excluded

*

interpolated

*

samples

*

Figure 3.2: Main instances and samples related diagram classes.

<<abstract>>
InstanceSeparator

InstanceSeparator (bool keepallgroups);
separateInGroups (vector<Instance>);

InstanceSeparatorAuto InstanceSeparatorDBSCAN InstanceSeparatorNone

Figure 3.3: Instance selection related diagram classes.
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<<abstract>>
SampleSelector

select (InstanceGroup, vector<string> Counters);

SampleSelectorDefault SampleSelectorFirst SampleSelectorDistance

Figure 3.4: Sample selector related diagram classes.

<<abstract>>
Interpolation

Interpolation (unsigned steps, bool prefilter);
do_interpolate(..);

InterpolationRstrucchange InterpolationKriger

Figure 3.5: Performance counter interpolation related diagram classes.

This grouping begets the InstanceGroup objects which contains references to those Instance
that belong to that particular group. Then, the folding removes the outliers to each Instance
within every InstanceGroup and store the outliers and the remaining in the excluded and in-
stances associations, respectively.

Since the complexity of the contouring algorithms depends on the number of points to
connect, and therefore the number of samples to fold, the Foldingtool supports limiting the
number of samples given to these algorithms. Figure 3.4 depicts the class diagram of the
available SampleSelector mechanisms to limit the number of samples.

• SampleSelectorDefault the select method returns all of the samples within the Instance-
Group. This is useful when the user does not impose any limit to the number of samples
to be folded.

• SampleSelectorFirst receives a threshold (N) in the class constructor. Then, the select
method tags the first N samples for the processing while the rest are marked as unused.

• SampleSelectorDistance receives a threshold (N) in the class constructor. Then, the select
method tags N samples that are equidistant within the Instance duration, while the rest
are unused.

Then the Foldingrepeatedly applies the contouring algorithm to the used samples among
the different InstanceGroup objects. The contouring algorithm applies to each performance
counter individually, and as of writing this document, there are two approaches that honor the
Interpolation super-class virtual method (mainly do interpolate):

• InterpolationKriger uses the self-provided contouring algorithm based on the Kriging
mechanism to implement the do interpolate.
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<<abstract>>
ComponentNode

evaluate (InterpolationResults);

ComponentNode-
constant

ComponentNode-data ComponentNode-derived

children
2

ComponentModel

1

Model

loadXML (file)

components

*

Figure 3.6: Performance models related diagram classes.

• InterpolationRstrucchange employs the strucchange package2 from the R statistical pack-
age3 to use piece-wise linear regressions to the folded samples. Additionally, this package
may benefit from parallel environments if the doParallel package4 is available on the sys-
tem.

The interpolation results are stored, per performance counter, into InterpolationResults
objects that are associated by InstanceGroup by the attribute interpolated (as depicted in
Figure 3.2). The interpolated attribute is implemented as a hash function indexed by the
performance counter, so that the interpolation results can be fetched easily.

The Foldingallows defining performance models based on performance counters using XML
files (see Listing 3.2 for exemplification purposes and ${FOLDING HOME}/etc/models for more
detailed examples). Within every XML there may be one or several components (in the last
Listing these are: l1 dcm ratio, l2 dcm ratio and mips) that will be later represented in the
resulting gnuplot using the selected colors and Y-axis (left [y1] or right [y2]). Each compo-
nent may refer to the instantaneous value of a certain performance counter (as in the mips

component), a constant value or the operation (addition, subtraction, multiplication and di-
vision) between two other values (as in l1 dcm ratio and l2 dcm ratio components). The
Foldingimplements the performance models based on performance counters employing the dia-
gram classes show in Figure 3.6. The XML model files are loaded into the Model class and each
of them may contain multiple components (ComponentModel). The ComponentModel imple-
ments the definition of the component on top of the ComponentNode derived sub-classes. These
sub-classes allow referencing constant values (ComponentNode constant), interpolated results
from a specific performance counter (ComponentNode data) and operation between other two
ComponentNode objects).

With respect to the analysis of the call-stack, the Foldingtool has implemented this analysis
through the CallstackProcessor related-classes that receives a set of Sample objects to explore.
Currently, the unique implementation available relies on aligning the call-stacks from the given
samples and then exploring the call-stack frames at a given level whether consecutive samples
refer to the same routine. If the number of samples surpasses a given threshold, then applies it

2http://cran.r-project.org/web/packages/strucchange/index.html
3http://www.r-project.org
4http://cran.r-project.org/package=doParallel
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Listing 3.2: Folding example model that generates the L1D and L2D misses per instruction, in
addition to the MIPS rate

1 <?xml version=’1.0’?>

2

3 <model name="sample" title -name="Sample model"

4 y1="Ratios" y2="MIPS" y1 -stacked="no">

5

6 <component name="l1_dcm_ratio" title -name="L1 DCM" where="y1"

7 color="red">

8 <operation type=’/’>

9 <value > PAPI_L1_DCM </value>

10 <value > PAPI_TOT_INS </value>

11 </operation >

12 </component >

13

14 <component name="l2_dcm_ratio" title -name="L2 DCM" where="y1"

15 color="blue">

16 <operation type=’/’>

17 <value > PAPI_L2_DCM </value>

18 <value > PAPI_TOT_INS </value>

19 </operation >

20 </component >

21

22 <component name="mips" title -name="MIPS" where="y2" color="black">

23 <value > PAPI_TOT_INS </value>

24 </component >

25

26 </model>

recursively to the next level until no more levels are available or the number of samples do not
surpass the threshold.
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<<abstract>>
CallstackProcessor

processSamples (vector<Sample>);

CallstackProcessor-
ConsecutiveRecursive

Figure 3.7: Call-stack processing related diagram classes.
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Chapter 4

API

This section covers the public API available in the Foldingpackage. This API is meant to allow
the Foldingtool to interact with other performance analysis tools in addition to Extrae.

4.1 Generation of input files for the Folding

4.1.1 Usage example

The directory $FOLDING HOME/share/examples/folding-writer contains an example that
shows how to generate an input file for the folding from a programatically point of view. The
example can be compiled using the following command:

# cd $FOLDING_HOME/share/examples/folding-writer

# make

The Listing 4.1 shows the example provided in the distributed/installed package. This
example demonstrates how to programatically create an .extract file for the interpolate

binary of the Foldingpackage.

Listing 4.1: Example of generating an input file for the Foldingmechanism.

1 /* ****************************************************************************\

2 * ANALYSIS PERFORMANCE TOOLS *

3 * Folding *

4 * Instrumentation package for parallel applications *

5 *****************************************************************************

6 * ___ This library is free software; you can redistribute it and/or *

7 * / __ modify it under the terms of the GNU LGPL as published *

8 * / / _____ by the Free Software Foundation; either version 2.1 *

9 * / / / \ of the License , or (at your option) any later version. *

10 * ( ( ( B S C ) *

11 * \ \ \_____/ This library is distributed in hope that it will be *

12 * \ \__ useful but WITHOUT ANY WARRANTY; without even the *

13 * \___ implied warranty of MERCHANTABILITY or FITNESS FOR A *

14 * PARTICULAR PURPOSE. See the GNU LGPL for more details. *

15 * *

16 * You should have received a copy of the GNU Lesser General Public License *

17 * along with this library; if not , write to the Free Software Foundation , *

18 * Inc., 51 Franklin Street , Fifth Floor , Boston , MA 02110 -1301 USA *

19 * The GNU LEsser General Public License is contained in the file COPYING. *

20 * --------- *

21 * Barcelona Supercomputing Center - Centro Nacional de Supercomputacion *

22 \**************************************************************************** */
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23

24 #include "folding -writer.H"

25 #include <fstream >

26

27 using namespace std;

28

29 int main (int argc , char *argv [])

30 {

31 string nameRegion = "FunctionA";

32 unsigned long long startRegion = 1000;

33 unsigned long long durationRegion = 4500;

34

35 /* NOTE:: Counters are given in deltas from their previous read , not as absolute values */

36 map <string , unsigned long long > c1;

37 c1["PAPI_TOT_INS"] = 1000;

38 c1["PAPI_TOT_CYC"] = 2000;

39 map <unsigned , CodeRefTriplet > crt1;

40 Sample *s1 = new Sample (2000, 2000- startRegion , c1, crt1);

41

42 map <string , unsigned long long > c2;

43 c2["PAPI_TOT_INS"] = 1000;

44 c2["PAPI_TOT_CYC"] = 2000;

45 map <unsigned , CodeRefTriplet > crt2;

46 CodeRefTriplet codeinfo_l0 (1,2,3);

47 CodeRefTriplet codeinfo_l1 (3,4,5);

48 crt2 [0] = codeinfo_l0;

49 crt2 [1] = codeinfo_l1;

50 Sample *s2 = new Sample (4000, 4000- startRegion , c2, crt2);

51

52 /* Last sample typically coincides with end of region -- see durationRegion ,

53 Folding :: Write won’t emit in a S entry */

54 map <string , unsigned long long > c3;

55 c3["PAPI_TOT_INS"] = 500;

56 c3["PAPI_TOT_CYC"] = 1000;

57 map <unsigned , CodeRefTriplet > crt3;

58 Sample *s3 = new Sample (4500, 4500- startRegion , c3, crt3);

59

60 vector <Sample*> vs;

61 vs.push_back (s1);

62 vs.push_back (s2);

63 vs.push_back (s3);

64

65 ofstream f("output.extract");

66 if (f.is_open ())

67 {

68 FoldingWriter :: Write (f, nameRegion , 1, 1, 1, startRegion ,

69 durationRegion , vs);

70 f.close ();

71 }

72

73 return 0;

74 }

The given example considers that the region FunctionA has been identified somehow by the
underlying monitoring mechanism, starts at 1,000 ns and lasts 4,500 ns (lines 31-33). Within this
period of time, three samples have occurred (s1-s3, created in lines 40, 50 and 58, respectively).
Samples contain performance counter information and source code references. The performance
counter information is given in a relative manner, thus each sample contains the difference from
the previous sample (or starting point). For instance, sample s1 captured information from two
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performance counters (PAPI TOT INS and PAPI TOT CYC) that counted 1,000 and 2,000 events
since the start of the region at time-stamp 2,000 ns (lines 36-40). The second sample (s2 ) does
not only contain information from performance counters, but also contains a call-stack segment
referencing two call-stack frames. The first frame (codeinfo l0) refers to the routine coded as
1, which has source code information coded as 2, and AST-block information coded as 3 (line
46). The same applies to second frame (codeinfo l1) - (line 47). These frames are mapped
into depths 0 and 1 (where 0 refers to the top of the call-stack) in lines 48 and 49, and then the
sample is built using the performance counter information and the call-stack information in line
50. Finally, the last sample (s3 ) only accounted 500 and 1,000 events for the PAPI TOT INS and
PAPI TOT CYC performance counters respectively, but did not capture any source code reference
(lines 54-58). This last sample should coincide with the end of the region (FunctionA), and
may not be necessarily information captured from a sample point, but from an instrumentation
point that indicates the end of the region. All these samples are packed together in a STL
vector container (lines 60-63), and then the FoldingWriter::Write static method dumps all
the information from the samples using the given output stream (lines 65-71).
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