Analysis with Paraver

Trace Alignment

Objective

Even if the trace generation and merging process tries to properly align the clocks at the different processors the traces obtained may still contain some shifts. These may show up in traces with backwards going communications, SPMD phases that one would expect to be aligned appearing as unnaligned or collective calls that do not seem to be executed at the same time.

The objective of this section is to explain how to correct shifts between processor and improve the quiality of traces.

Material

The following traces, utilities and configuration files are provided as material for this tutorial.

· trace.Exchange.16.4194304.prv: this trace from a specific run of the IMB communication becnchmark that was generated without aligning the process timestamps.

· a cfgs directory with some configuration files to be used in the tutorial

· compute_shifts_from_colectives.pl: a simple perl script to compute how much should each process shifted to achieve a perfect alignment of the last collective in a given trace.

· Some traces (shifts.txt, trace.Exchange.16.4194304.chop1.prv, trace.Exchange.16.4194304.shifted.prv, trace.Exchange.16.4194304.cleancut.prv) obtained during the alignment process described below.

Alignment based on collectives

The behavior we expect from some collective calls is that they have to be called by all processes and no process leaves the call until all have arrived. Furthermore, for at least some of them we expect all processors to leave the collective at the same time. Of course this never happens like that in a real implementation, but differences in the exit time of the call by the different processors should be small.

The task_shifter utility provided with the Paraver distribution can modify the timestams of a trace by shifting all the timestamps of each process by a given offset specified in an input file. This utility can be used to shifts such that a given objective function is optimized. For example we can force a given MPI barrier call to be exited by all processes at exactly the same time.

For example, load trace trace.Exchange.16.4194304.prv and configuration file mpi_call.cfg. You can zoom for example around the MPI_init call or some of the barrier calls. It is clearly apparent (Figure 1) that different processors exit these calls at different times. Process 1 is consistently leaves collective calls at least 1.3 ms later than any other process. The pattern is quite consistent along the whole run, as one would expect from unsynchronized local clocks at different processors. Even if clocks have the same frequency, it is natural to have some fixed offset between them.

[image: image1.png]
Figure 1: MPI calls for whole trace

Utility compute_shifts_from_collective.pl is a simple perl script that scans a paraver tracefile and computes an offset for each process such that if applied to the trace would make the last collective call in that trace to finish at the same time. One way to compute to align a given instance of a collective would be to generate a cut trace including a small region around the desired collective. For example we can obtain a cut corresponding to Figure 2.

[image: image2.png]
Figure 2: Zoom of MPI calls around barriers before starting the exchange phase.

To cut the trace, we use the “scisors” tool in Paraver as described in document Paraver_trace_preparation.doc. In this case we need an exact cut for the interval that we select on the window. For this purpose we have to set the trace options to not use original time, to break states and do not remove neither first nor last state. We thus generate trace.Exchange.16.4194304.chop1.prv which we can feed to the compute_shifts_from_collective.pl utility

./compute_shift_from_collectives.pl trace.Exchange.16.4194304.chop1.prv >shifts.txt

and use the computed shifts to realign the original trace

task_shifter shifts.txt trace.Exchange.16.4194304.prv trace.Exchange.16.4194304.shifted.prv

Load this new trace and the mpi_call.cfg configuration file. You can see a much better alignment of the activities of the different processes. This can be seen in Figure 3. The timeline on top corresponds to the aligned trace and shows the actual structure of the application much better than the original trace (bellow). It is clear for example on the figure on top that there is some level of imbalance between the MPI_init (green) and the MPI_broadcast (yellow). It is also very apparent the imbalance before arriving to the MPI_barriers (Red) that precedes the actual exchange of data (white). A detailed zoom in the barrier area we can see that one of them is perfectly aligned. Although there is some misalignment in other barrier calls, at least some structure can be observed.

[image: image3.png]
Figure 3: Corresponding section fo MPI call timeline for aligned and unaligned trace

Trace preparation of Dimemas simulation

By perfectly aligning some collectives such as the barriers above it is possible to obtain a clean point for cutting a trace (just after the aligned collective) where all processes are in a computation bursts. Typically, this avoids cutting collectives or point to point communications.

By fist applying the process to obtain a initial point, cutting and shifting again to obtain a final point it is possible to obtain a cleanly cut trace. Trace trace.Exchange.16.4194304.cleancut.prv is an example trace obtained by this process. This trace exposes much better the actual behavior than the original trace. (Figure 4 vs Figure 1).
[image: image4.png]
Figure 4: Clean cut trace for the exchange phase of the IBm benchmark
This trace can also be converted to a Dimemas .trf and be used in parametric Dimemas simulations.

